Mesenchymal Stem Cells
Welcome to Our Mesenchymal Stem Cell Information Hub
Are you curious about mesenchymal stem cells (MSCs)? We've gathered essential information and answers to frequently asked questions to help you understand the potential and applications of these remarkable cells.
​
Frequently Asked Questions:
1. Where Can Mesenchymal Stem Cells Be Found?
Mesenchymal stem cells can be sourced from various tissues, including:
-
Bone Marrow: Often considered the primary source.
-
Adipose Tissue: Abundant in fat tissue.
-
Umbilical Cord Tissue and Blood: A valuable source, non-controversial and readily available.
2. How Are Mesenchymal Stem Cells Used in Medicine?
MSCs have shown promise with supporting healing for various conditions, including:
-
Orthopedic Issues: Such as osteoarthritis and fractures.
-
Autoimmune Diseases: Like rheumatoid arthritis and multiple sclerosis.
-
Cardiovascular Disorders: Studies explore their potential in heart-related issues.
3. Are Mesenchymal Stem Cell Treatments Safe?
Research suggests that MSC treatments are generally safe with minimal side effects. However, it's crucial to consult with a qualified healthcare professional before undergoing any stem cell therapy.
4. What Is the Process of Mesenchymal Stem Cell Therapy?
The procedure involves harvesting MSCs from a suitable source, isolating and expanding them in a laboratory, and then reintroducing them into the patient through injection or infusion.
5. Are There Clinical Trials for Mesenchymal Stem Cell Therapies?
Yes, ongoing clinical trials explore the benefits, safety, and efficacy of MSC therapies for various conditions.
6. What Is the Potential Future of Mesenchymal Stem Cell Research?
Mesenchymal Stem Cells have now been researched for over 50 years. More recent revelations in medical technology have allowed clinical applications to occur and researchers are continually exploring new applications for MSCs, including neurological disorders, diabetes, and wound healing. The field holds great promise for advancing regenerative medicine.
Consultation and Further Information:
For personalized information and to explore whether mesenchymal stem cell therapy is the right option for you, schedule a consultation with our experienced healthcare professionals. We are dedicated to providing comprehensive and tailored solutions to support your health and well-being.
Don't hesitate to reach out to us with any additional questions or concerns. Our team is here to guide you through the exciting realm of mesenchymal stem cell research and therapy.
What Are Mesenchymal Stem Cells (MSCs)?
Mesenchymal stem cells are a type of multipotent stem cell with the ability to differentiate into various cell types, including bone cells, cartilage cells, and adipocytes (fat cells). They are found in various tissues, such as bone marrow, adipose tissue, and umbilical cord tissue.
Key Features of MSCs:
-
Regenerative Potential: MSCs possess regenerative properties, making them a promising tool for tissue repair and regeneration.
-
Immunomodulatory Effects: MSCs can modulate the immune response, making them valuable in the treatment of autoimmune and inflammatory conditions.
-
Differentiation Abilities: They can differentiate into cells of the mesodermal lineage, contributing to the repair of connective tissues.
Research Articles About Mesenchymal Stem Cells
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells. 2019 Aug 13;8(8):886. doi: 10.3390/cells8080886. PMID: 31412678; PMCID: PMC6721852.
1. Friedenstein A.J., Gorskaja U.F., Kulagina N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 1976;4:267–274. [PubMed] [Google Scholar]
2. Ashton B.A., Allen T.D., Howlett C., Eaglesom C., Hattori A., Owen M. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin. Orthop. Relat. Res. 1980;151:294–307. doi: 10.1097/00003086-198009000-00040. [PubMed] [CrossRef] [Google Scholar]
3. Owen M., Friedenstein A. Stromal stem cells: Marrow-derived osteogenic precursors. Ciba. Found Symp. 1988;136:42–60. [PubMed] [Google Scholar]
4. Salgado A.J., Oliveira J.M., Martins A., Teixeira F.G., Silva N.A., Neves N.M., Sousa N., Reis R.L. Tissue engineering and regenerative medicine: Past, present, and future. Int. Rev. Neurobiol. 2013;108:1–33. [PubMed] [Google Scholar]
5. Campagnoli C., Roberts I.A.G., Kumar S., Bennett P.R., Bellantuono I., Fisk N.M. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98:2396–2402. doi: 10.1182/blood.V98.8.2396. [PubMed] [CrossRef] [Google Scholar]
6. Chen Y., Shao J.Z., Xiang L.X., Dong X.J., Zhang G.R. Mesenchymal stem cells: A promising candidate in regenerative medicine. Int. J. Biochem. Cell Biol. 2008;40:815–820. doi: 10.1016/j.biocel.2008.01.007. [PubMed] [CrossRef] [Google Scholar]
7. Gao F., Chiu S.M., Motan D.A.L., Zhang Z., Chen L., Ji H.L., Tse H.F., Fu Q.L., Lian Q. Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death Dis. 2016;7:e2062. doi: 10.1038/cddis.2015.327. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8. Aggarwal S., Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–1822. doi: 10.1182/blood-2004-04-1559. [PubMed] [CrossRef] [Google Scholar]
9. Erices A., Conget P., Minguell J.J. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 2000;109:235–242. doi: 10.1046/j.1365-2141.2000.01986.x. [PubMed] [CrossRef] [Google Scholar]
10. Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001;7:211–228. doi: 10.1089/107632701300062859. [PubMed] [CrossRef] [Google Scholar]
11. De Bari C., Dell’Accio F., Tylzanowski P., Luyten F.P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44:1928–1942. doi: 10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P. [PubMed] [CrossRef] [Google Scholar]
12. Soleimani M., Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc. 2009;4:102–106. doi: 10.1038/nprot.2008.221. [PubMed] [CrossRef] [Google Scholar]
13. Zhu H., Guo Z.K., Jiang X.X., Li H., Wang X.Y., Yao H.Y., Zhang Y., Mao N. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat. Protoc. 2010;5:550–560. doi: 10.1038/nprot.2009.238. [PubMed] [CrossRef] [Google Scholar]
14. El-Ansary M., Abdel-Aziz I., Mogawer S., Abdel-Hamid S., Hammam O., Teaema S., Wahdan M. Phase II trial: Undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev. Rep. 2012;8:972–981. doi: 10.1007/s12015-011-9322-y. [PubMed] [CrossRef] [Google Scholar]
15. Mao P., Joshi K., Li J.F., Kim S.H., Li P.P., Santana-Santos L., Luthra S., Chandran U.R., Benos P.V., Smith L., et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc. Natl. Acad. Sci. USA. 2013;110:8644–8649. doi: 10.1073/pnas.1221478110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16. Caniglia C.J., Schramme M.C., Smith R.K. The effect of intralesional injection of bone marrow derived mesenchymal stem cells and bone marrow supernatant on collagen fibril size in a surgical model of equine superficial digital flexor tendonitis. Equine Vet. J. 2012;44:587–593. doi: 10.1111/j.2042-3306.2011.00514.x. [PubMed] [CrossRef] [Google Scholar]
17. Davies L.C., Lonnies H., Locke M., Sundberg B., Rosendahl K., Gotherstrom C., Le Blanc K., Stephens P. Oral mucosal progenitor cells are potently immunosuppressive in a dose-independent manner. Stem Cells Dev. 2012;21:1478–1487. doi: 10.1089/scd.2011.0434. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
18. Herrmann R., Sturm M., Shaw K., Purtill D., Cooney J., Wright M., Phillips M., Cannell P. Mesenchymal stromal cell therapy for steroid-refractory acute and chronic graft versus host disease: A phase 1 study. Int. J. Hematol. 2012;95:182–188. doi: 10.1007/s12185-011-0989-2. [PubMed] [CrossRef] [Google Scholar]
19. Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002;13:4279–4295. doi: 10.1091/mbc.e02-02-0105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
20. Smadja D.M., d’Audigier C., Guerin C.L., Mauge L., Dizier B., Silvestre J.S., Dal Cortivo L., Gaussem P., Emmerich J. Angiogenic potential of BM MSCs derived from patients with critical leg ischemia. Bone Marrow Transplant. 2012;47:997–1000. doi: 10.1038/bmt.2011.196. [PubMed] [CrossRef] [Google Scholar]
21. Connick P., Kolappan M., Crawley C., Webber D.J., Patani R., Michell A.W., Du M.Q., Luan S.L., Altmann D.R., Thompson A.J., et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: An open-label phase 2a proof-of-concept study. Lancet Neurol. 2012;11:150–156. doi: 10.1016/S1474-4422(11)70305-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
22. Doorn J., Siddappa R., van Blitterswijk C.A., de Boer J. Forskolin enhances in vivo bone formation by human mesenchymal stromal cells. Tissue Eng. Part A. 2012;18:558–567. doi: 10.1089/ten.tea.2011.0312. [PubMed] [CrossRef] [Google Scholar]
23. Higuera G.A., Schop D., Spitters T.W.G.M., van Dijkhuizen-Radersma R., Bracke M., de Bruijn J.D., Martens D., Karperien M., van Boxtel A., van Blitterswijk C.A. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells. Tissue Eng. Part A. 2012;18:654–664. doi: 10.1089/ten.tea.2011.0223. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
24. Zhao D.W., Cui D.P., Wang B.J., Tian F.D., Guo L., Yang L., Liu B.Y., Yu X.B. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone. 2012;50:325–330. doi: 10.1016/j.bone.2011.11.002. [PubMed] [CrossRef] [Google Scholar]
25. Futami I., Ishijima M., Kaneko H., Tsuji K., Ichikawa-Tomikawa N., Sadatsuki R., Muneta T., Arikawa-Hirasawa E., Sekiya I., Kaneko K. Isolation and characterization of multipotential mesenchymal cells from the mouse synovium. PloS ONE. 2012;7:e45517. doi: 10.1371/journal.pone.0045517. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
​
​
26. Kim M.J., Shin K.S., Jeon J.H., Lee D.R., Shim S.H., Kim J.K., Cha D.H., Yoon T.K., Kim G.J. Human chorionic-plate-derived mesenchymal stem cells and Wharton’s jelly-derived mesenchymal stem cells: A comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res. 2011;346:53–64. doi: 10.1007/s00441-011-1249-8. [PubMed] [CrossRef] [Google Scholar]
27. Marx R.E., Harrell D.B. Translational research: The CD34+ cell is crucial for large-volume bone regeneration from the milieu of bone marrow progenitor cells in craniomandibular reconstruction. Int. J. Oral. Maxillofac. Implants. 2014;24:e201–209. doi: 10.11607/jomi.te56. [PubMed] [CrossRef] [Google Scholar]
28. Sibov T.T., Severino P., Marti L.C., Pavon L.F., Oliveira D.M., Tobo P.R., Campos A.H., Paes A.T., Amaro E., Gamarra L.F., et al. Mesenchymal stem cells from umbilical cord blood: Parameters for isolation, characterization and adipogenic differentiation. Cytotechnology. 2012;64:511–521. doi: 10.1007/s10616-012-9428-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
29. Gao L.R., Pei X.T., Ding Q.A., Chen Y., Zhang N.K., Chen H.Y., Wang Z.G., Wang Y.F., Zhu Z.M., Li T.C., et al. A critical challenge: Dosage-related efficacy and acute complication intracoronary injection of autologous bone marrow mesenchymal stem cells in acute myocardial infarction. Int. J. Cardiol. 2013;168:3191–3199. doi: 10.1016/j.ijcard.2013.04.112. [PubMed] [CrossRef] [Google Scholar]
30. Dai R.R., Yu Y.C., Yan G.F., Hou X.X., Ni Y.M., Shi G.C. Intratracheal administration of adipose derived mesenchymal stem cells alleviates chronic asthma in a mouse model. BMC Pulm. Med. 2018;18:131. doi: 10.1186/s12890-018-0701-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
31. Yoshimura H., Muneta T., Nimura A., Yokoyama A., Koga H., Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007;327:449–462. doi: 10.1007/s00441-006-0308-z. [PubMed] [CrossRef] [Google Scholar]
32. Choudhery M.S., Badowski M., Muise A., Harris D.T. Comparison of human mesenchymal stem cells derived from adipose and cord tissue. Cytotherapy. 2013;15:330–343. doi: 10.1016/j.jcyt.2012.11.010. [PubMed] [CrossRef] [Google Scholar]
33. Park J.S., Shim M.S., Shim S.H., Yang H.N., Jeon S.Y., Woo D.G., Lee D.R., Yoon T.K., Park K.H. Chondrogenic potential of stem cells derived from amniotic fluid, adipose tissue, or bone marrow encapsulated in fibrin gels containing TGF-β3. Biomaterials. 2011;32:8139–8149. doi: 10.1016/j.biomaterials.2011.07.043. [PubMed] [CrossRef] [Google Scholar]
34. Pievani A., Scagliotti V., Russo F.M., Azario I., Rambaldi B., Sacchetti B., Marzorati S., Erba E., Giudici G., Riminucci M., et al. Comparative analysis of multilineage properties of mesenchymal stromal cells derived from fetal sources shows an advantage of mesenchymal stromal cells isolated from cord blood in chondrogenic differentiation potential. Cytotherapy. 2014;16:893–905. doi: 10.1016/j.jcyt.2014.02.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
35. Chung C.S., Fujita N., Kawahara N., Yui S., Nam E., Nishimura R. A comparison of neurosphere differentiation potential of canine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells. J. Vet. Med. Sci. 2013;75:879–886. doi: 10.1292/jvms.12-0470. [PubMed] [CrossRef] [Google Scholar]
36. Bae K.S., Park J.B., Kim H.S., Kim D.S., Park D.J., Kang S.J. Neuron-like differentiation of bone marrow-derived mesenchymal stem cells. Yonsei. Med. J. 2011;52:401–412. doi: 10.3349/ymj.2011.52.3.401. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
37. Hou L.L., Cao H., Wang D.M., Wei G.R., Bai C.X., Zhang Y., Pei X.T. Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in vitro. Int. J. Hematol. 2003;78:256–261. doi: 10.1007/BF02983804. [PubMed] [CrossRef] [Google Scholar]
38. Lei H., Yu B., Huang Z., Yang X., Liu Z., Mao X., Tian G., He J., Han G., Chen H., et al. Comparative analysis of mesenchymal stem cells from adult mouse adipose, muscle, and fetal muscle. Mol. Biol. Rep. 2013;40:885–892. doi: 10.1007/s11033-012-2129-3. [PubMed] [CrossRef] [Google Scholar]
39. Xu W., Zhang X., Qian H., Zhu W., Sun X., Hu J., Zhou H., Chen Y. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp. Biol. Med. 2004;229:623–631. doi: 10.1177/153537020422900706. [PubMed] [CrossRef] [Google Scholar]
40. Yang J., Song T., Wu P., Chen Y., Fan X., Chen H., Zhang J., Huang C. Differentiation potential of human mesenchymal stem cells derived from adipose tissue and bone marrow to sinus node-like cells. Mol. Med. Rep. 2012;5:108–113. [PubMed] [Google Scholar]
41. Yin L.B., Zhu Y.H., Yang J.G., Ni Y.J., Zhou Z., Chen Y., Wen L.X. Adipose tissue-derived mesenchymal stem cells differentiated into hepatocyte-like cells in vivo and in vitro. Mol. Med. Rep. 2015;11:1722–1732. doi: 10.3892/mmr.2014.2935. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42. Banas A., Teratani T., Yamamoto Y., Tokuhara M., Takeshita F., Quinn G., Okochi H., Ochiya T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology. 2007;46:219–228. doi: 10.1002/hep.21704. [PubMed] [CrossRef] [Google Scholar]
43. Zhou R.P., Li Z.K., He C.Y., Li R.L., Xia H.B., Li C.Y., Xiao J., Chen Z.Y. Human umbilical cord mesenchymal stem cells and derived Hepatocyte-like cells exhibit similar therapeutic effects on an acute liver failure mouse model. PloS ONE. 2014;9:e104392. doi: 10.1371/journal.pone.0104392. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
44. Lee H.J., Jung J., Cho K.J., Lee C.K., Hwang S.G., Kim G.J. Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells and other adult stem cells as an alternative source of functional hepatocytes. Differentiation. 2012;84:223–231. doi: 10.1016/j.diff.2012.05.007. [PubMed] [CrossRef] [Google Scholar]
45. Katikireddy K.R., Dana R., Jurkunas U.V. Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells. Stem Cells. 2014;32:717–729. doi: 10.1002/stem.1541. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
46. Rohaina C.M., Then K.Y., Ng A.M.H., Halim W.H.W.A., Zahidin A.Z.M., Saim A., Idrus R.B.H. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl. Res. 2014;163:200–210. doi: 10.1016/j.trsl.2013.11.004. [PubMed] [CrossRef] [Google Scholar]
47. Andrzejewska A., Lukomska B., Janowski M. Concise review: Mesenchymal stem cells: from roots to boost. Stem Cells. 2019;37:855–864. doi: 10.1002/stem.3016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
48. Lin H., Sohn J., Shen H., Langhans M.T., Tuan R.S. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials. 2018;203:96–110. doi: 10.1016/j.biomaterials.2018.06.026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
49. Mochizuki T., Muneta T., Sakaguchi Y., Nimura A., Yokoyama A., Koga H., Sekiya I. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: Distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum. 2006;54:843–853. doi: 10.1002/art.21651. [PubMed] [CrossRef] [Google Scholar]
50. Jin H.J., Bae Y.K., Kim M., Kwon S.J., Jeon H.B., Choi S.J., Kim S.W., Yang Y.S., Oh W., Chang J.W. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int. J. Mol. Sci. 2013;14:17986–18001. doi: 10.3390/ijms140917986. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
51. Younger E.M., Chapman M.W. Morbidity at bone graft donor sites. J. Orthop. Trauma. 1989;3:192–195. doi: 10.1097/00005131-198909000-00002. [PubMed] [CrossRef] [Google Scholar]
52. Lozano-Calderon S.A., Swaim S.O., Federico A., Anderson M.E., Gebhardt M.C. Predictors of soft-tissue complications and deep infection in allograft reconstruction of the proximal tibia. J. Surg. Oncol. 2016;113:811–817. doi: 10.1002/jso.24234. [PubMed] [CrossRef] [Google Scholar]
53. Jiang Y.H., Jahagirdar B.N., Reinhardt R.L., Schwartz R.E., Keene C.D., Ortiz-Gonzalez X.R., Reyes M., Lenvik T., Lund T., Blackstad M., et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–49. doi: 10.1038/nature00870. [PubMed] [CrossRef] [Google Scholar]
54. Kargozar S., Mozafari M., Hashemian S.J., Milan P.B., Hamzehlou S., Soleimani M., Joghataei M.T., Gholipourmalekabadi M., Korourian A., Mousavizadeh K., et al. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton’s jelly, and adipose tissue. J. Biomed. Mater. Res. B. 2018;106:61–72. doi: 10.1002/jbm.b.33814. [PubMed] [CrossRef] [Google Scholar]
55. Yang J.Z., Zhang Y.S., Yue K., Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017;57:1–25. doi: 10.1016/j.actbio.2017.01.036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
56. Bougioukli S., Sugiyama O., Pannell W., Ortega B., Tan M.H., Tang A.H., Yoho R., Oakes D.A., Lieberman J.R. Genetherapy for bone repair using human cells: Superior osteogenic potential of bone morphogenetic protein 2-transduced mesenchymal stem cells derived from adipose tissue compared to bone marrow. Hum. Gene Ther. 2018;29:507–519. doi: 10.1089/hum.2017.097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
57. Burrow K.L., Hoyland J.A., Richardson S.M. Human adipose-derived stem cells exhibit enhanced proliferative capacity and retain multipotency longer than donor-matched bone marrow mesenchymal stem cells during expansion in vitro. Stem Cells Int. 2017;15:2541275. doi: 10.1155/2017/2541275. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
58. Ye K.Q., Liu D.H., Kuang H.Z., Cai J.Y., Chen W.M., Sun B.B., Xia L.G., Fang B., Morsi Y., Mo X.M. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J. Colloid Interface Sci. 2019;534:625–636. doi: 10.1016/j.jcis.2018.09.071. [PubMed] [CrossRef] [Google Scholar]
59. Aragon J., Salerno S., De Bartolo L., Irusta S., Mendoza G. Polymeric electrospun scaffolds for bone morphogenetic protein 2 delivery in bone tissue engineering. J. Colloid Interface Sci. 2018;531:126–137. doi: 10.1016/j.jcis.2018.07.029. [PubMed] [CrossRef] [Google Scholar]
60. Decambron A., Devriendt N., Larochette N., Manassero M., Bourguignon M., El-Hafci H., Petite H., Viateau V., Logeart-avramoglou D. Effect of the bone morphogenetic protein-2 doses on the osteogenic potential of human multipotent stromal cells- containing tissue engineered constructs. Tissue Eng. Part A. 2019;25:642–651. doi: 10.1089/ten.tea.2018.0146. [PubMed] [CrossRef] [Google Scholar]
61. Chen F., Bi D., Cheng C., Ma S., Liu Y., Cheng K. Bone morphogenetic protein 7 enhances the osteogenic differentiation of human dermal-derived CD105+ fibroblast cells through the Smad and MAPK pathways. Int. J. Mol. Med. 2019;43:37–46. doi: 10.3892/ijmm.2018.3938. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
62. Zhu J.H., Liao Y.P., Li F.S., Hu Y., Li Q., Ma Y., Wang H., Zhou Y., He B.C., Su Y.X. Wnt11 promotes BMP9-induced osteogenic differentiation through BMPs/Smads and p38 MAPK in mesenchymal stem cells. J. Cell Biochem. 2018;119:9462–9473. doi: 10.1002/jcb.27262. [PubMed] [CrossRef] [Google Scholar]
63. Bizelli-Silveira C., Pullisaar H., Abildtrup L.A., Andersen O.Z., Spin-Neto R., Foss M., Kraft D.C.E. Strontium enhances proliferation and osteogenic behavior of periodontal ligament cells in vitro. J. Periodont. Res. 2018;53:1020–1028. doi: 10.1111/jre.12601. [PubMed] [CrossRef] [Google Scholar]
64. Tang D., Tare R.S., Yang L.Y., Williams D.F., Ou K.L., Oreffo R.O.C. Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration. Biomaterials. 2016;83:363–382. doi: 10.1016/j.biomaterials.2016.01.024. [PubMed] [CrossRef] [Google Scholar]
65. Westhauser F., Senger A.S., Reible B., Moghaddam A. In vivo models for the evaluation of the osteogenic potency of bone substitutes seeded with mesenchymal stem cells of human origin: A concise review. Tissue Eng. Part C. 2017;23:881–888. doi: 10.1089/ten.tec.2017.0164. [PubMed] [CrossRef] [Google Scholar]
66. Khojasteh A., Fahimipour F., Jafarian M., Sharifi D., Jahangir S., Khayyatan F., Eslaminejad M.B. Bone engineering in dog mandible: Coculturing mesenchymal stem cells with endothelial progenitor cells in a composite scaffold containing vascular endothelial growth factor. J. Biomed. Mater. Res. B. 2017;105:1767–1777. doi: 10.1002/jbm.b.33707. [PubMed] [CrossRef] [Google Scholar]
67. Katagiri W., Watanabe J., Toyama N., Osugi M., Sakaguchi K., Hibi H. Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation. Implant. Dent. 2017;26:607–612. doi: 10.1097/ID.0000000000000618. [PubMed] [CrossRef] [Google Scholar]
68. Gjerde C., Mustafa K., Hellem S., Rojewski M., Gjengedal H., Yassin M.A., Feng X., Skaale S., Berge T., Rosen A., et al. Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Res. Ther. 2018;9:213. doi: 10.1186/s13287-018-0951-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
69. Liebergall M., Schroeder J., Mosheiff R., Gazit Z., Yoram Z., Rasooly L., Daskal A., Khoury A., Weil Y., Beyth S. Stem cell-based therapy for prevention of delayed fracture union: A randomized and prospective preliminary study. Mol. Ther. 2013;21:1631–1638. doi: 10.1038/mt.2013.109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
70. Giannotti S., Trombi L., Bottai V., Ghilardi M., D’Alessandro D., Danti S., Dell’Osso G., Guido G., Petrini M. Use of autologous human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: Long-term assessment. PloS ONE. 2013;8:e73893. doi: 10.1371/annotation/e4403abb-b80e-43c5-be74-1bdb2c899d1c. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
71. Honarpardaz A., Irani S., Pezeshki-Modaress M., Zandi M., Sadeghi A. Enhanced chondrogenic differentiation of bone marrow mesenchymal stem cells on gelatin/glycosaminoglycan electrospun nanofibers with different amount of glycosaminoglycan. J. Biomed. Mater. Res. Part A. 2019;107:38–48. doi: 10.1002/jbm.a.36501. [PubMed] [CrossRef] [Google Scholar]
72. Fernandes T.L., Kimura H.A., Pinheiro C.C.G., Shimomura K., Nakamura N., Ferreira J.R.M., Gomoll A.H., Hernandez A.J., Bueno D.F. Human synovial mesenchymal stem cells good manufacturing practices for articular cartilage regeneration. Tissue Eng. Part C. 2018;24:709–716. doi: 10.1089/ten.tec.2018.0219. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
73. Zou J.Y., Bai B., Yao Y.C. Progress of co-culture systems in cartilage regeneration. Expert. Opin. Biol. Ther. 2018;18:1151–1158. doi: 10.1080/14712598.2018.1533116. [PubMed] [CrossRef] [Google Scholar]
74. Girao A.F., Semitela A., Ramalho G., Completo A., Marques P. Mimicking nature: Fabrication of 3D anisotropic electrospun polycaprolactone scaffolds for cartilage tissue engineering applications. Composites, Part B. 2018;154:99–107. doi: 10.1016/j.compositesb.2018.08.001. [CrossRef] [Google Scholar]
75. Liu M., Zeng X., Ma C., Yi H., Ali Z., Mou X.B., Li S., Deng Y., He N.Y. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;5:20. doi: 10.1038/boneres.2017.14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
76. Legendre F., Ollitrault D., Gomez-Leduc T., Bouyoucef M., Hervieu M., Gruchy N., Mallein-Gerin F., Leclercq S., Demoor M., Galera P. Enhanced chondrogenesis of bone marrow-derived stem cells by using a combinatory cell therapy strategy with BMP-2/TGF-β1, hypoxia, and COL1A1/HtrA1 siRNAs. Sci. Rep. 2017;7:3406. doi: 10.1038/s41598-017-03579-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
77. Crecente-Campo J., Borrajo E., Vidal A., Garcia-Fuentes M. New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation. Eur. J. Pharm. Biopharm. 2017;114:69–78. doi: 10.1016/j.ejpb.2016.12.021. [PubMed] [CrossRef] [Google Scholar]
78. Gugjoo M.B., Amarpal, Abdelbaset-Ismail A., Aithal H.P., Kinjavdekar P., Pawde A.M., Kumar G.S., Sharma G.T. Mesenchymal stem cells with IGF-1 and TGF-β1 in laminin gel for osteochondral defects in rabbits. Biomed. Pharmacother. 2017;93:1165–1174. doi: 10.1016/j.biopha.2017.07.032. [PubMed] [CrossRef] [Google Scholar]
79. Fahy N., Alini M., Stoddart M.J. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. J. Orthop. Res. 2018;36:52–63. doi: 10.1002/jor.23670. [PubMed] [CrossRef] [Google Scholar]
80. Wakitani S., Goto T., Pineda S.J., Young R.G., Mansour J.M., Caplan A.I., Goldberg V.M. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 1994;76:579–592. doi: 10.2106/00004623-199404000-00013. [PubMed] [CrossRef] [Google Scholar]
81. de Windt T.S., Vonk L.A., Slaper-Cortenbach I.C., van den Broek M.P., Nizak R., van Rijen M.H., de Weger R.A., Dhert W.J., Saris D.B. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells. 2017;35:256–264. doi: 10.1002/stem.2475. [PubMed] [CrossRef] [Google Scholar]
82. Wakitani S., Imoto K., Yamamoto T., Saito M., Murata N., Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr. Cartilage. 2002;10:199–206. doi: 10.1053/joca.2001.0504. [PubMed] [CrossRef] [Google Scholar]
83. Orozco L., Munar A., Soler R., Alberca M., Soler F., Huguet M., Sentis J., Sanchez A., Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: A pilot study. Transplantation. 2013;95:1535–1541. doi: 10.1097/TP.0b013e318291a2da. [PubMed] [CrossRef] [Google Scholar]
84. Shapiro S.A., Kazmerchak S.E., Heckman M.G., Zubair A.C., O’Connor M.I. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am. J. Sports Med. 2017;45:82–90. doi: 10.1177/0363546516662455. [PubMed] [CrossRef] [Google Scholar]
85. Sasaki H., Rothrauff B.B., Alexander P.G., Lin H., Gottardi R., Fu F.H., Tuan R.S. In vitro repair of meniscal radial tear with hydrogels seeded with adipose stem cells and TGF-β3. Am. J. Sports Med. 2018;46:2402–2413. doi: 10.1177/0363546518782973. [PubMed] [CrossRef] [Google Scholar]
86. Shimomura K., Rothrauff B.B., Hart D.A., Hamamoto S., Kobayashi M., Yoshikawa H., Tuan R.S., Nakamura N. Enhanced repair of meniscal hoop structure injuries using an aligned electrospun nanofibrous scaffold combined with a mesenchymal stem cell-derived tissue engineered construct. Biomaterials. 2018;192:346–354. doi: 10.1016/j.biomaterials.2018.11.009. [PubMed] [CrossRef] [Google Scholar]
87. Liang Y., Idrees E., Szojka A.R.A., Andrews S.H.J., Kunze M., Mulet-Sierra A., Jomha N.M., Adesida A.B. Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Acta Biomater. 2018;80:131–143. doi: 10.1016/j.actbio.2018.09.038. [PubMed] [CrossRef] [Google Scholar]
88. Toratani T., Nakase J., Numata H., Oshima T., Takata Y., Nakayama K., Tsuchiya H. Scaffold-free tissue-engineered allogenic adipose-derived stem cells promote meniscus healing. Arthroscopy. 2017;33:346–354. doi: 10.1016/j.arthro.2016.07.015. [PubMed] [CrossRef] [Google Scholar]
89. Tarafder S., Gulko J., Sim K.H., Yang J., Cook J.L., Lee C.H. Engineered healing of avascular meniscus tears by stem cell recruitment. Sci. Rep. 2018;8:8150. doi: 10.1038/s41598-018-26545-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
90. Chen M.X., Guo W.M., Gao S., Hao C.X., Shen S., Zhang Z.Z., Wang Z.H., Li X., Jing X.G., Zhang X.L., et al. Biomechanical stimulus based strategies for meniscus tissue engineering and regeneration. Tissue Eng. Part B. 2018;24:392–402. doi: 10.1089/ten.teb.2017.0508. [PubMed] [CrossRef] [Google Scholar]
91. Chew E., Prakash R., Khan W. Mesenchymal stem cells in human meniscal regeneration: A systematic review. Ann. Med. Surg. 2017;24:3–7. doi: 10.1016/j.amsu.2017.09.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
92. Clanton T.O., Coupe K.J. Hamstring strains in athletes: Diagnosis and treatment. J. Am. Acad. Orthop. Surg. 1998;6:237–248. doi: 10.5435/00124635-199807000-00005. [PubMed] [CrossRef] [Google Scholar]
93. Wang D., Jiang X.H., Lu A.Q., Tu M., Huang W., Huang P. BMP14 induces tenogenic differentiation of bone marrow mesenchymal stem cells in vitro. Exp. Ther. Med. 2018;16:1165–1174. doi: 10.3892/etm.2018.6293. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
94. Aktas E., Chamberlain C.S., Saether E.E., Duenwald-Kuehl S.E., Kondratko-Mittnacht J., Stitgen M., Lee J.S., Clements A.E., Murphy W.L., Vanderby R. Immune modulation with primed mesenchymal stem cells delivered via biodegradable scaffold to repair an Achilles tendon segmental defect. J. Orthop. Res. 2017;35:269–280. doi: 10.1002/jor.23258. [PubMed] [CrossRef] [Google Scholar]
95. Park S.H., Choi Y.J., Moon S.W., Lee B.H., Shim J.H., Cho D.W., Wang J.H. Three-dimensional bio-printed scaffold sleeves with mesenchymal stem cells for enhancement of tendon-to-bone healing in anterior cruciate ligament reconstruction using soft-tissue tendon graft. Arthroscopy. 2018;34:166–179. doi: 10.1016/j.arthro.2017.04.016. [PubMed] [CrossRef] [Google Scholar]
96. Wang T., Thien C., Wang C., Ni M., Gao J.J., Wang A., Jiang Q., Tuan R.S., Zheng Q.J., Zheng M.H. 3D uniaxial mechanical stimulation induces tenogenic differentiation of tendon-derived stem cells through a PI3K/AKT signaling pathway. FASEB J. 2018;32:4804–4814. doi: 10.1096/fj.201701384R. [PubMed] [CrossRef] [Google Scholar]
97. Gulecyuz M.F., Macha K., Pietschmann M.F., Ficklscherer A., Sievers B., Rossbach B.P., Jansson V., Muller P.E. Allogenic myocytes and mesenchymal stem cells partially improve fatty rotator cuff degeneration in a rat model. Stem Cell Rev. Rep. 2018;14:847–859. doi: 10.1007/s12015-018-9829-6. [PubMed] [CrossRef] [Google Scholar]
98. Bertolo A., Mehr M., Aebli N., Baur M., Ferguson S.J., Stoyanov J.V. Influence of different commercial scaffolds on the in vitro differentiation of human mesenchymal stem cells to nucleus pulposus-like cells. Eur. Spine J. 2012;21 Suppl 6:S826–838. doi: 10.1007/s00586-011-1975-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
99. Zhou X., Wang J., Huang X., Fang W., Tao Y., Zhao T., Liang C., Hua J., Chen Q., Li F. Injectable decellularized nucleus pulposus-based cell delivery system for differentiation of adipose-derived stem cells and nucleus pulposus regeneration. Acta Biomater. 2018;81:115–128. doi: 10.1016/j.actbio.2018.09.044. [PubMed] [CrossRef] [Google Scholar]
100. Hou Y., Liang L., Shi G.D., Shi J.G., Sun J.C., Xu G.H., Guo Y.F., Yuan W. In vivo evaluation of the adenovirus-mediated Sox9 and BMP2 double gene transduction on treatment of intervertebral disc degeneration in rabbit annular puncture model. J. Biomater. Tissue Eng. 2018;8:1091–1099. doi: 10.1166/jbt.2018.1863. [CrossRef] [Google Scholar]
101. Varma D.M., DiNicolas M.S., Nicoll S.B. Injectable, redox-polymerized carboxymethylcellulose hydrogels promote nucleus pulposus-like extracellular matrix elaboration by human MSCs in a cell density-dependent manner. J. Biomater. Appl. 2018;33:576–589. doi: 10.1177/0885328218805216. [PubMed] [CrossRef] [Google Scholar]
102. Kraus P., Lufkin T. Implications for a stem cell regenerative medicine based approach to human intervertebral disk degeneration. Front. Cell Dev. Biol. 2017;5:17. doi: 10.3389/fcell.2017.00017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
103. Orozco L., Soler R., Morera C., Alberca M., Sanchez A., Garcia-Sancho J. Intervertebral disc repair by autologous mesenchymal bone marrow cells: A pilot study. Transplantation. 2011;92:822–828. doi: 10.1097/TP.0b013e3182298a15. [PubMed] [CrossRef] [Google Scholar]
104. Pettine K.A., Suzuki R.K., Sand T.T., Murphy M.B. Autologous bone marrow concentrate intradiscal injection for the treatment of degenerative disc disease with three-year follow-up. Int. Orthop. 2017;41:2097–2103. doi: 10.1007/s00264-017-3560-9. [PubMed] [CrossRef] [Google Scholar]
105. Kumar H., Ha D.H., Lee E.J., Park J.H., Shim J.H., Ahn T.K., Kim K.T., Ropper A.E., Sohn S., Kim C.H., et al. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res. Ther. 2017;8:262. doi: 10.1186/s13287-017-0710-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
106. Kim M., Kim K.H., Song S.U., Yi T.G., Yoon S.H., Park S.R., Choi B.H. Transplantation of human bone marrow-derived clonal mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model. J. Tissue Eng. Regen. Med. 2018;12:E1034–E1045. doi: 10.1002/term.2425. [PubMed] [CrossRef] [Google Scholar]
107. Jahan-Abad A.J., Negah S.S., Ravandi H.H., Ghasemi S., Borhani-Haghighi M., Stummer W., Gorji A., Ghadiri M.K. Human neural stem/progenitor cells derived from epileptic human brain in a self-assembling peptide nanoscaffold improve traumatic brain injury in rats. Mol. Neurobiol. 2018;55:9122–9138. doi: 10.1007/s12035-018-1050-8. [PubMed] [CrossRef] [Google Scholar]
108. Luo L.H., He Y., Wang X.Y., Key B., Lee B.H., Li H.Q., Ye Q.S. Potential roles of dental pulp stem cells in neural regeneration and repair. Stem Cells Int. 2018;2018:1731289. doi: 10.1155/2018/1731289. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
109. Fesharaki M., Razavi S., Ghasemi-Mobarakeh L., Behjati M., Yarahmadian R., Kazemi M., Hejazi H. Differentiation of human scalp adipose-derived mesenchymal stem cells into mature neural cells on electrospun nanofibrous scaffolds for nerve tissue engineering applications. Cell J. 2018;20:168–176. [PMC free article] [PubMed] [Google Scholar]
110. Ma Y.H., Zeng X., Qiu X.C., Wei Q.S., Che M.T., Ding Y., Liu Z., Wu G.H., Sun J.H., Pang M., et al. Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord. Biomaterials. 2018;160:37–55. doi: 10.1016/j.biomaterials.2018.01.015. [PubMed] [CrossRef] [Google Scholar]
111. Comar M., Delbue S., Zanotta N., Valencic E., Piscianz E., Del Savio R., Tesser A., Tommasini A., Ferrante P. In vivo detection of polyomaviruses JCV and SV40 in mesenchymal stem cells from human umbilical cords. Pediatr. Blood Cancer. 2014;61:1347–1349. doi: 10.1002/pbc.24943. [PubMed] [CrossRef] [Google Scholar]
112. van Velthoven C.T.J., Kavelaars A., Heijnen C.J. Mesenchymal stem cells as a treatment for neonatal ischemic brain damage. Pediatr. Res. 2012;71:474–481. doi: 10.1038/pr.2011.64. [PubMed] [CrossRef] [Google Scholar]
113. Shi B., Ding J.X., Liu Y., Zhuang X.M., Zhuang X.L., Chen X.S., Fu C.F. ERK1/2 pathway-mediated differentiation of IGF-1-transfected spinal cord-derived neural stem cells into oligodendrocytes. PloS ONE. 2014;9:e106038. doi: 10.1371/journal.pone.0106038. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
114. de Araujo Farias V., Carrillo-Galvez A.B., Martin F., Anderson P. TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev. 2018;43:25–37. doi: 10.1016/j.cytogfr.2018.06.002. [PubMed] [CrossRef] [Google Scholar]
115. Zhang Y.L., Chopp M., Zhang Z.G., Katakowski M., Xin H.Q., Qu C.S., Ali M., Mahmood A., Xiong Y. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem. Int. 2017;111:69–81. doi: 10.1016/j.neuint.2016.08.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
116. Oliveri R.S., Bello S., Biering-Sorensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: Systematic review with meta-analyses of rat models. Neurobiol. Dis. 2014;62:338–353. doi: 10.1016/j.nbd.2013.10.014. [PubMed] [CrossRef] [Google Scholar]
117. Oh S.K., Choi K.H., Yoo J.Y., Kim D.Y., Kim S.J., Jeon S.R. A phase III clinical trial showing limited efficacy of autologous mesenchymal stem cell therapy for spinal cord injury. Neurosurgery. 2016;78:436–447. doi: 10.1227/NEU.0000000000001056. [PubMed] [CrossRef] [Google Scholar]
118. Wang S., Cheng H.B., Dai G.H., Wang X.D., Hua R.R., Liu X.B., Wang P.S., Chen G.M., Yue W., An Y.H. Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Res. 2013;1532:76–84. doi: 10.1016/j.brainres.2013.08.001. [PubMed] [CrossRef] [Google Scholar]
119. Hu C.X., Li L.J. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J. Cell Mol. Med. 2018;22:1428–1442. doi: 10.1111/jcmm.13492. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
120. Harris V.K., Stark J., Vyshkina T., Blackshear L., Joo G., Stefanova V., Sara G., Sadiq S.A. Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine. 2018;29:23–30. doi: 10.1016/j.ebiom.2018.02.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
121. Sykova E., Rychmach P., Drahoradova I., Konradova S., Ruzickova K., Vorisek I., Forostyak S., Homola A., Bojar M. Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: Results of phase I/IIa clinical trial. Cell Transplant. 2017;26:647–658. doi: 10.3727/096368916X693716. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
122. Shichinohe H., Kawabori M., Iijima H., Teramoto T., Abumiya T., Nakayama N., Kazumata K., Terasaka S., Arato T., Houkin K. Research on advanced intervention using novel bone marrOW stem cell (RAINBOW): A study protocol for a phase I, open-label, uncontrolled, dose-response trial of autologous bone marrow stromal cell transplantation in patients with acute ischemic stroke. BMC Neurol. 2017;17:179. doi: 10.1186/s12883-017-0955-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
123. Venkatesh K., Sen D. Mesenchymal stem cells as a source of dopaminergic neurons: A potential cell based therapy for Parkinson’s disease. Curr. Stem Cell Res. T. 2017;12:326–347. doi: 10.2174/1574888X12666161114122059. [PubMed] [CrossRef] [Google Scholar]
124. Bucan V., Vaslaitis D., Peck C.T., StrauSs S., Vogt P.M., Radtke C. Effect of exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury. Mol. Neurobiol. 2019;56:1812–1824. doi: 10.1007/s12035-018-1172-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
125. Sun X., Zhu Y., Yin H.Y., Guo Z.Y., Xu F., Xiao B., Jiang W.L., Guo W.M., Meng H.Y., Lu S.B., et al. Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: Potential advantage of cellular transient memory function. Stem Cell Res. Ther. 2018;9:133. doi: 10.1186/s13287-018-0884-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
126. Fan L.H., Yu Z.F., Li J., Dang X.Q., Wang K.Z. Schwann-like cells seeded in acellular nerve grafts improve nerve regeneration. BMC Musculoskel. Dis. 2014;15:165. doi: 10.1186/1471-2474-15-165. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
127. Hu F.H., Zhang X.F., Liu H.X., Xu P., Doulathunnisa, Teng G.J., Xiao Z.D. Neuronally differentiated adipose-derived stem cells and aligned PHBV nanofiber nerve scaffolds promote sciatic nerve regeneration. Biochem. Biophys. Res. Commun. 2017;489:171–178. doi: 10.1016/j.bbrc.2017.05.119. [PubMed] [CrossRef] [Google Scholar]
128. Papa S., Vismara I., Mariani A., Barilani M., Rimondo S., De Paola M., Panini N., Erba E., Mauri E., Rossi F., et al. Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury. J. Controlled Release. 2018;278:49–56. doi: 10.1016/j.jconrel.2018.03.034. [PubMed] [CrossRef] [Google Scholar]
129. Lin T., Liu S., Chen S.H., Qiu S., Rao Z.L., Liu J.H., Zhu S., Yan L.W., Mao H.Q., Zhu Q.T., et al. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater. 2018;73:326–338. doi: 10.1016/j.actbio.2018.04.001. [PubMed] [CrossRef] [Google Scholar]
130. Lee S.J., Esworthy T., Stake S., Miao S., Zuo Y.Y., Harris B.T., Zhang L.G. Advances in 3D bioprinting for neural tissue engineering. Adv. Biosyst. 2018;2:18. doi: 10.1002/adbi.201700213. [CrossRef] [Google Scholar]
131. Decosterd I., Woolf C.J. Spared nerve injury: An animal model of persistent peripheral neuropathic pain. Pain. 2000;87:149–158. doi: 10.1016/S0304-3959(00)00276-1. [PubMed] [CrossRef] [Google Scholar]
132. Angius D., Wang H., Spinner R.J., Gutierrez-Cotto Y., Yaszemski M.J., Windebank A.J. A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials. 2012;33:8034–8039. doi: 10.1016/j.biomaterials.2012.07.056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
133. O’Rourke C., Day A.G.E., Murray-Dunning C., Thanabalasundaram L., Cowan J., Stevanato L., Grace N., Cameron G., Drake R.A.L., Sinden J., et al. An allogeneic ‘off the shelf’ therapeutic strategy for peripheral nerve tissue engineering using clinical grade human neural stem cells. Sci. Rep. 2018;8:11. doi: 10.1038/s41598-018-20927-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
134. Thomson A.A., Cunha G.R. Prostatic growth and development are regulated by FGF10. Development. 1999;126:3693–3701. [PubMed] [Google Scholar]
135. Matthes S.M., Reimers K., Janssen I., Liebsch C., Kocsis J.D., Vogt P.M., Radtke C. Intravenous transplantation of mesenchymal stromal cells to enhance peripheral nerve regeneration. Biomed. Res. Int. 2013;2013:573169. doi: 10.1155/2013/573169. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
136. Toma C., Pittenger M.F., Cahill K.S., Byrne B.J., Kessler P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105:93–98. doi: 10.1161/hc0102.101442. [PubMed] [CrossRef] [Google Scholar]
137. Mori D., Miyagawa S., Yajima S., Saito S., Fukushima S., Ueno T., Toda K., Kawai K., Kurata H., Nishida H., et al. Cell spray transplantation of adipose-derived mesenchymal stem cell recovers ischemic cardiomyopathy in a porcine model. Transplantation. 2018;102:2012–2024. doi: 10.1097/TP.0000000000002385. [PubMed] [CrossRef] [Google Scholar]
138. Nagaya N., Kangawa K., Itoh T., Iwase T., Murakami S., Miyahara Y., Fujii T., Uematsu M., Ohgushi H., Yamagishi M., et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation. 2005;112:1128–1135. doi: 10.1161/CIRCULATIONAHA.104.500447. [PubMed] [CrossRef] [Google Scholar]
139. Gnecchi M., Danieli P., Cervio E. Mesenchymal stem cell therapy for heart disease. Vascul. Pharmacol. 2012;57:48–55. doi: 10.1016/j.vph.2012.04.002. [PubMed] [CrossRef] [Google Scholar]
140. Butler J., Epstein S.E., Greene S.J., Quyyumi A.A., Sikora S., Kim R.J., Anderson A.S., Wilcox J.E., Tankovich N.I., Lipinski M.J., et al. Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy safety and efficacy results of a phase II-a randomized trial. Circ. Res. 2017;120:332–340. doi: 10.1161/CIRCRESAHA.116.309717. [PubMed] [CrossRef] [Google Scholar]
141. Choe G., Park J., Jo H., Kim Y.S., Ahn Y., Lee J.Y. Studies on the effects of microencapsulated human mesenchymal stem cells in RGD-modified alginate on cardiomyocytes under oxidative stress conditions using in vitro biomimetic co-culture system. Int. J. Biol. Macromol. 2018;123:512–520. doi: 10.1016/j.ijbiomac.2018.11.115. [PubMed] [CrossRef] [Google Scholar]
142. Jiang S., Zhang S. Differentiation of cardiomyocytes from amniotic fluid-derived mesenchymal stem cells by combined induction with transforming growth factor β1 and 5-azacytidine. Mol. Med. Rep. 2017;16:5887–5893. doi: 10.3892/mmr.2017.7373. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
143. Jung S., Kim J.H., Yim C., Lee M., Kang H.J., Choi D. Therapeutic effects of a mesenchymal stem cell-based insulin-like growth factor-1/enhanced green fluorescent protein dual gene sorting system in a myocardial infarction rat model. Mol. Med. Rep. 2018;18:5563–5571. doi: 10.3892/mmr.2018.9561. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
144. Haneef K., Ali A., Khan I., Naeem N., Jamall S., Salim A. Role of IL-7 in fusion of rat bone marrow mesenchymal stem cells with cardiomyocytes in vitro and improvement of cardiac function in vivo. Cardiovasc. Ther. 2018;36:e12479. doi: 10.1111/1755-5922.12479. [PubMed] [CrossRef] [Google Scholar]
145. Fujita Y., Kawamoto A. Stem cell-based peripheral vascular regeneration. Adv. Drug Deliv. Rev. 2017;120:25–40. doi: 10.1016/j.addr.2017.09.001. [PubMed] [CrossRef] [Google Scholar]
146. Shafei A.E., Ali M.A., Ghanem H.G., Shehata A.I., Abdelgawad A.A., Handal H.R., Talaat K.A., Ashaal A.E., El-Shal A.S. Mesenchymal stem cell therapy: A promising cell-based therapy for treatment of myocardial infarction. J. Gene. Med. 2017;19:e2995. doi: 10.1002/jgm.2995. [PubMed] [CrossRef] [Google Scholar]
147. Tse H.F., Kwong Y.L., Chan J.K., Lo G., Ho C.L., Lau C.P. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet. 2003;361:47–49. doi: 10.1016/S0140-6736(03)12111-3. [PubMed] [CrossRef] [Google Scholar]
148. Eng G., Lee B.W., Parsa H., Chin C.D., Schneider J., Linkov G., Sia S.K., Vunjak-Novakovic G. Assembly of complex cell microenvironments using geometrically docked hydrogel shapes. Proc. Natl. Acad. Sci. USA. 2013;110:4551–4556. doi: 10.1073/pnas.1300569110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
149. Cheng G.S., Wang X.Y., Li Y.X., He L. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling. Stem Cell Res. Ther. 2017;8:11. doi: 10.1186/s13287-017-0480-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
150. Bernal W., Wendon J. Acute liver failure. N. Engl. J. Med. 2013;369:2525–2534. doi: 10.1056/NEJMra1208937. [PubMed] [CrossRef] [Google Scholar]
151. Petersen B.E., Bowen W.C., Patrene K.D., Mars W.M., Sullivan A.K., Murase N., Boggs S.S., Greenberger J.S., Goff J.P. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284:1168–1170. doi: 10.1126/science.284.5417.1168. [PubMed] [CrossRef] [Google Scholar]
152. Shi D.Y., Zhang J.M., Zhou Q., Xin J.J., Jiang J., Jiang L.Y., Wu T.Z., Li J., Ding W.C., Li J., et al. Quantitative evaluation of human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs. Gut. 2017;66:955–964. doi: 10.1136/gutjnl-2015-311146. [PubMed] [CrossRef] [Google Scholar]
153. Higashiyama R., Inagaki Y., Hong Y.Y., Kushida M., Nakao S., Niioka M., Watanabe T., Okano H., Matsuzaki Y., Shiota G., et al. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology. 2007;45:213–222. doi: 10.1002/hep.21477. [PubMed] [CrossRef] [Google Scholar]
154. Liu W.H., Song F.Q., Ren L.N., Guo W.Q., Wang T., Feng Y.X., Tang L.J., Li K. The multiple functional roles of mesenchymal stem cells in participating in treating liver diseases. J. Cell Mol. Med. 2015;19:511–520. doi: 10.1111/jcmm.12482. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
155. Lou G.H., Yang Y., Liu F.F., Ye B.J., Chen Z., Zheng M., Liu Y.N. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. J. Cell Mol. Med. 2017;21:2963–2973. doi: 10.1111/jcmm.13208. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
156. Suk K.T., Yoon J.H., Kim M.Y., Kim C.W., Kim J.K., Park H., Hwang S.G., Kim D.J., Lee B.S., Lee S.H., et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology. 2016;64:2185–2197. doi: 10.1002/hep.28693. [PubMed] [CrossRef] [Google Scholar]
157. Liang J., Zhang H., Zhao C., Wang D., Ma X., Zhao S., Wang S., Niu L., Sun L. Effects of allogeneic mesenchymal stem cell transplantation in the treatment of liver cirrhosis caused by autoimmune diseases. Int. J. Rheum. Dis. 2017;20:1219–1226. doi: 10.1111/1756-185X.13015. [PubMed] [CrossRef] [Google Scholar]
158. Fang X.Q., Zhang J.F., Song H.Y., Chen Z.L., Dong J., Chen X., Pan J.J., Liu B., Chen C.X. Effect of umbilical cord mesenchymal stem cell transplantation on immune function and prognosis of patients with decompensated hepatitis B cirrhosis. Zhonghua Gan Zang Bing Za Zhi. 2016;24:907–910. [PubMed] [Google Scholar]
159. Schwartz R.E., Reyes M., Koodie L., Jiang Y.H., Blackstad M., Lund T., Lenvik T., Johnson S., Hu W.S., Verfaillie C.M. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. 2002;109:1291–1302. doi: 10.1172/JCI0215182. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
160. Lee K.D., Kuo T.K.C., Whang-Peng J., Chung Y.F., Lin C.T., Chou S.H., Chen J.R., Chen Y.P., Lee O.K.S. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004;40:1275–1284. doi: 10.1002/hep.20469. [PubMed] [CrossRef] [Google Scholar]
161. Haga H., Yan I.K., Takahashi K., Matsuda A., Patel T. Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice. Stem Cell Transl. Med. 2017;6:1262–1272. doi: 10.1002/sctm.16-0226. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
162. Papanikolaou I.G., Katselis C., Apostolou K., Feretis T., Lymperi M., Konstadoulakis M.M., Papalois A.E., Zografos G.C. Mesenchymal stem cells transplantation following partial hepatectomy: A new concept to promote liver regeneration-systematic review of the literature focused on experimental studies in rodent models. Stem Cells Int. 2017;22:7567958. doi: 10.1155/2017/7567958. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
163. Di Bonzo L.V., Ferrero I., Cravanzola C., Mareschi K., Rustichell D., Novo E., Sanavio F., Cannito S., Zamara E., Bertero M., et al. Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: Engraftment and hepatocyte differentiation versus profibrogenic potential. Gut. 2008;57:223–231. doi: 10.1136/gut.2006.111617. [PubMed] [CrossRef] [Google Scholar]
164. Decker M., Martinez-Morentin L., Wang G.N., Lee Y.J., Liu Q.X., Leslie J., Ding L. Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat. Cell Biol. 2017;19:677–688. doi: 10.1038/ncb3530. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
165. Detry O., Vandermeulen M., Delbouille M.H., Somja J., Bletard N., Briquet A., Lechanteur C., Giet O., Baudoux E., Hannon M., et al. Infusion of mesenchymal stromal cells after deceased liver transplantation: A phase I-II, open-label, clinical study. J. Hepatol. 2017;67:47–55. doi: 10.1016/j.jhep.2017.03.001. [PubMed] [CrossRef] [Google Scholar]
166. Tsubota K., Satake Y., Kaido M., Shinozaki N., Shimmura S., Bissen-Miyajima H., Shimazaki J. Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation. N. Engl. J. Med. 1999;340:1697–1703. doi: 10.1056/NEJM199906033402201. [PubMed] [CrossRef] [Google Scholar]
167. Navas A., Magana-Guerrero F.S., Dominguez-Lopez A., Chavez-Garcia C., Partido G., Graue-Hernandez E.O., Sanchez-Garcia F.J., Garfias Y. Anti-inflammatory and anti-fibrotic effects of human amniotic membrane mesenchymal stem cells and their potential in corneal repair. Stem Cell Transl Med. 2018;7:906–917. doi: 10.1002/sctm.18-0042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
168. Haagdorens M., Van Acker S.I., Van Gerwen V., Ni Dhubhghaill S., Koppen C., Tassignon M.J., Zakaria N. Limbal stem cell deficiency: Current treatment options and emerging therapies. Stem Cells Int. 2016;2016:9798374. doi: 10.1155/2016/9798374. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
169. Shen T., Shen J., Zheng Q.Q., Li Q.S., Zhao H.L., Cui L., Hong C.Y. Cell viability and extracellular matrix synthesis in a co-culture system of corneal stromal cells and adipose-derived mesenchymal stem cells. Int. J. Ophthalmol. 2017;10:670–678. [PMC free article] [PubMed] [Google Scholar]
170. Yamashita K., Inagaki E., Hatou S., Higa K., Ogawa A., Miyashita H., Tsubota K., Shimmura S. Corneal endothelial regeneration using mesenchymal stem cell derived from human umbilical cord. Stem Cells Dev. 2018;27:1097–1108. doi: 10.1089/scd.2017.0297. [PubMed] [CrossRef] [Google Scholar]
171. Lohan P., Murphy N., Treacy O., Lynch K., Morcos M., Chen B.L., Ryan A.E., Griffin M.D., Ritter T. Third-party allogeneic mesenchymal stromal cells prevent rejection in a pre-sensitized high-risk model of corneal transplantation. Front Immunol. 2018;9:2666. doi: 10.3389/fimmu.2018.02666. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
172. Ma Y.L., Xu Y.S., Xiao Z.F., Yang W., Zhang C., Song E., Du Y.Q., Li L.S. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells. 2006;24:315–321. doi: 10.1634/stemcells.2005-0046. [PubMed] [CrossRef] [Google Scholar]
173. Gu S.F., Xing C.Z., Han J.Y., Tso M.O.M., Hong J. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol. Vis. 2009;15:99–107. [PMC free article] [PubMed] [Google Scholar]
174. Lee H.J., Ko J.H., Ko A.Y., Kim M.K., Wee W.R., Oh J.Y. Intravenous infusion of mesenchymal stem/stromal cells decreased CCR7+ antigen presenting cells in mice with corneal allotransplantation. Curr. Eye. Res. 2014;39:780–789. doi: 10.3109/02713683.2013.877489. [PubMed] [CrossRef] [Google Scholar]
175. Yao L., Li Z.R., Su W.R., Li Y.P., Lin M.L., Zhang W.X., Liu Y., Wan Q., Liang D. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PloS ONE. 2012;7:e30842. doi: 10.1371/journal.pone.0030842. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
176. Oh J.Y., Kim M.K., Shin M.S., Lee H.J., Ko J.H., Wee W.R., Lee J.H. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells. 2008;26:1047–1055. doi: 10.1634/stemcells.2007-0737. [PubMed] [CrossRef] [Google Scholar]
177. Bray L.J., Heazlewood C.F., Munster D.J., Hutmacher D.W., Atkinson K., Harkin D.G. Immunosuppressive properties of mesenchymal stromal cell cultures derived from the limbus of human and rabbit corneas. Cytotherapy. 2014;16:64–73. doi: 10.1016/j.jcyt.2013.07.006. [PubMed] [CrossRef] [Google Scholar]
178. Oh J.Y., Lee R.H., Yu J.M., Ko J.H., Lee H.J., Ko A.Y., Roddy G.W., Prockop D.J. Intravenous mesenchymal stem cells prevented rejection of allogeneic corneal transplants by aborting the early inflammatory response. Mol. Ther. 2012;20:2143–2152. doi: 10.1038/mt.2012.165. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
179. Den Hondt M., Vranckx J.J. Reconstruction of defects of the trachea. J. Mater. Sci.: Mater. Med. 2017;28:11. doi: 10.1007/s10856-016-5835-x. [PubMed] [CrossRef] [Google Scholar]
180. Sun Z., Wang Y., Gong X., Su H., Han X. Secretion of rat tracheal epithelial cells induces mesenchymal stem cells to differentiate into epithelial cells. Cell Biol. Int. 2012;36:169–175. doi: 10.1042/CBI20110121. [PubMed] [CrossRef] [Google Scholar]
181. Paunescu V., Deak E., Herman D., Siska I.R., Tanasie G., Bunu C., Anghel S., Tatu C.A., Oprea T.I., Henschler R., et al. In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J. Cell Mol. Med. 2007;11:502–508. doi: 10.1111/j.1582-4934.2007.00041.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
182. Shu C., Li T.Y., Tsang L.L., Fok K.L., Lo P.S., Zhu J.X., Ho L.S., Chung Y.W., Chan H.C. Differentiation of adult rat bone marrow stem cells into epithelial progenitor cells in culture. Cell Biol. Int. 2006;30:823–828. doi: 10.1016/j.cellbi.2006.06.004. [PubMed] [CrossRef] [Google Scholar]
183. Pan S., Zhong Y., Shan Y., Liu X., Xiao Y., Shi H. Selection of the optimum 3D-printed pore and the surface modification techniques for tissue engineering tracheal scaffold in vivo reconstruction. J. Biomed. Mater. Res. A. 2019;107:360–370. doi: 10.1002/jbm.a.36536. [PubMed] [CrossRef] [Google Scholar]
184. Ghorbani F., Moradi L., Shadmehr M.B., Bonakdar S., Droodinia A., Safshekan F. In-vivo characterization of a 3D hybrid scaffold based on PCL/decellularized aorta for tracheal tissue engineering. Mater. Sci. Eng. C. 2017;81:74–83. doi: 10.1016/j.msec.2017.04.150. [PubMed] [CrossRef] [Google Scholar]
185. Pan S., Liu X., Shi H. The biocompatibility and immunogenicity study of decellularized tracheal matrix. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018;32:441–447. [PMC free article] [PubMed] [Google Scholar]
186. Chang J.W., Park S.A., Park J.K., Choi J.W., Kim Y.S., Shin Y.S., Kim C.H. Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: Preliminary report. Artif. Organs. 2014;38:E95–E105. doi: 10.1111/aor.12310. [PubMed] [CrossRef] [Google Scholar]
187. Siddiqi S., de Wit R., van der Heide S., Oosterwijk E., Verhagen A. Aortic allografts: Final destination?-a summary of clinical tracheal substitutes. J. Thorac. Dis. 2018;10:5149–5153. doi: 10.21037/jtd.2018.07.108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
188. Jorge L.F., Francisco J.C., Bergonse N., Baena C., Carvalho K.A.T., Abdelwahid E., Neto J.R.F., Moreira L.F.P., Guarita-Souza L.C. Tracheal repair with acellular human amniotic membrane in a rabbit model. J. Tissue Eng. Regen. Med. 2018;12:E1525–E1530. doi: 10.1002/term.2576. [PubMed] [CrossRef] [Google Scholar]
189. Xu Y., Li D., Yin Z.Q., He A.J., Lin M.M., Jiang G.N., Song X., Hu X.F., Liu Y., Wang J.P., et al. Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique. Acta Biomater. 2017;58:113–121. doi: 10.1016/j.actbio.2017.05.010. [PubMed] [CrossRef] [Google Scholar]
190. Jing H., Gao B., Gao M., Yin H., Mo X., Zhang X., Luo K., Feng B., Fu W., Wang J., et al. Restoring tracheal defects in a rabbit model with tissue engineered patches based on TGF-β3-encapsulating electrospun poly(L-lactic acid-co-ε-caprolactone)/collagen scaffolds. Artif. Cells, Nanomed., Biotechnol. 2018;46:985–995. doi: 10.1080/21691401.2018.1439844. [PubMed] [CrossRef] [Google Scholar]
191. Wang J., Sun B., Tian L., He X., Gao Q., Wu T., Ramakrishna S., Zheng J., Mo X. Evaluation of the potential of rhTGF-β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton’s jelly of human umbilical cord. Mater. Sci. Eng. C. 2017;70:637–645. doi: 10.1016/j.msec.2016.09.044. [PubMed] [CrossRef] [Google Scholar]
192. Bae S.W., Lee K.W., Park J.H., Lee J., Jung C.R., Yu J., Kim H.Y., Kim D.H. 3D bioprinted artificial trachea with epithelial cells and chondrogenic-differentiated bone marrow-derived mesenchymal stem cells. Int. J. Mol. Sci. 2018;19:14. doi: 10.3390/ijms19061624. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
193. Maughan E.F., Hynds R.E., Proctor T.J., Janes S.M., Elliott M., Birchall M.A., Lowdell M.W., De Coppi P. Autologous cell seeding in tracheal tissue engineering. Curr. Stem Cell Rep. 2017;3:279–289. doi: 10.1007/s40778-017-0108-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
194. Macchiarini P., Jungebluth P., Go T., Asnaghi M.A., Rees L.E., Cogan T.A., Dodson A., Martorell J., Bellini S., Parnigotto P.P., et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372:2023–2030. doi: 10.1016/S0140-6736(08)61598-6. [PubMed] [CrossRef] [Google Scholar]
195. Gonfiotti A., Jaus M.O., Barale D., Baiguera S., Comin C., Lavorini F., Fontana G., Sibila O., Rombola G., Jungebluth P., et al. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet. 2014;383:238–244. doi: 10.1016/S0140-6736(13)62033-4. [PubMed] [CrossRef] [Google Scholar]
196. Elliott M.J., De Coppi P., Speggiorin S., Roebuck D., Butler C.R., Samuel E., Crowley C., McLaren C., Fierens A., Vondrys D., et al. Stem-cell-based, tissue engineered tracheal replacement in a child: A 2-year follow-up study. Lancet. 2012;380:994–1000. doi: 10.1016/S0140-6736(12)60737-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
197. Wang P.H., Huang B.S., Horng H.C., Yeh C.C., Chen Y.J. Wound healing. J. Chin. Med. Assoc. 2018;81:94–101. doi: 10.1016/j.jcma.2017.11.002. [PubMed] [CrossRef] [Google Scholar]
198. Laverdet B., Micallef L., Lebreton C., Mollard J., Lataillade J.J., Coulomb B., Desmouliere A. Use of mesenchymal stem cells for cutaneous repair and skin substitute elaboration. Pathol. Biol. 2014;62:108–117. doi: 10.1016/j.patbio.2014.01.002. [PubMed] [CrossRef] [Google Scholar]
199. Feldman D.S., McCauley J.F. Mesenchymal stem cells and transforming growth factor-β3 (TGF-β3) to enhance the regenerative ability of an albumin scaffold in full thickness wound healing. J. Funct. Biomater. 2018;9:65. doi: 10.3390/jfb9040065. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
200. Qi Y., Jiang D.S., Sindrilaru A., Stegemann A., Schatz S., Treiber N., Rojewski M., Schrezenmeier H., Beken S.V., Wlaschek M., et al. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J. Invest. Dermatol. 2014;134:526–537. doi: 10.1038/jid.2013.328. [PubMed] [CrossRef] [Google Scholar]
201. Ong H.T., Dilley R.J. Novel non-angiogenic role for mesenchymal stem cell-derived vascular endothelial growth factor on keratinocytes during wound healing. Cytokine Growth Factor Rev. 2018;44:69–79. doi: 10.1016/j.cytogfr.2018.11.002. [PubMed] [CrossRef] [Google Scholar]
202. Jiang X., Wu F., Xu Y., Yan J.X., Wu Y.D., Li S.H., Liao X., Liang J.X., Li Z.H., Liu H.W. A novel role of angiotensin II in epidermal cell lineage determination: Angiotensin II promotes the differentiation of mesenchymal stem cells into keratinocytes through the p38 MAPK, JNK and JAK2 signalling pathways. Exp. Dermatol. 2019;28:59–65. doi: 10.1111/exd.13837. [PubMed] [CrossRef] [Google Scholar]
203. Kolakshyapati P., Li X.Y., Chen C.Y., Zhang M.X., Tan W.Q., Ma L.E., Gao C.Y. Gene-activated matrix/bone marrow-derived mesenchymal stem cells constructs regenerate sweat glands-like structure in vivo. Sci. Rep. 2017;7:13. doi: 10.1038/s41598-017-17967-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
204. Yang D., Sun S., Wang Z., Zhu P., Yang Z., Zhang B. Stromal cell-derived factor-1 receptor CXCR4-overexpressing bone marrow mesenchymal stem cells accelerate wound healing by migrating into skin injury areas. Cell Reprogram. 2013;15:206–215. doi: 10.1089/cell.2012.0046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
205. Kisseleva T., Uchinami H., Feirt N., Quintana-Bustamante O., Segovia J.C., Schwabe R.F., Brenner D.A. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol. 2006;45:429–438. doi: 10.1016/j.jhep.2006.04.014. [PubMed] [CrossRef] [Google Scholar]
206. Nakamura Y., Ishikawa H., Kawai K., Tabata Y., Suzuki S. Enhanced wound healing by topical administration of mesenchymal stem cells transfected with stromal cell-derived factor-1. Biomaterials. 2013;34:9393–9400. doi: 10.1016/j.biomaterials.2013.08.053. [PubMed] [CrossRef] [Google Scholar]
207. Cai S., Pan Y., Han B., Sun T.Z., Sheng Z.Y., Fu X.B. Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands. Chin. Med. J. 2011;124:2260–2268. [PubMed] [Google Scholar]
208. Solmaz H., Ulgen Y., Gulsoy M. Photobiomodulation of wound healing via visible and infrared laser irradiation. Lasers Med. Sci. 2017;32:903–910. doi: 10.1007/s10103-017-2191-0. [PubMed] [CrossRef] [Google Scholar]
209. Murphy K.C., Whitehead J., Zhou D.J., Ho S.S., Leach J.K. Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids. Acta Biomater. 2017;64:176–186. doi: 10.1016/j.actbio.2017.10.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
210. Tavakol D.N., Jeffries L.A., Schwager S.C., Kelly-Goss M.R., Peirce S.M. Design of a 3D-bioprinted mesenchymal stem-cell laden construct for accelerating angiogenesis in diabetic wounds. FASEB J. 2017;31:2. [Google Scholar]
211. Shokrgozar M.A., Fattahi M., Bonakdar S., Ragerdi Kashani I., Majidi M., Haghighipour N., Bayati V., Sanati H., Saeedi S.N. Healing potential of mesenchymal stem cells cultured on a collagen-based scaffold for skin regeneration. Iran. Biomed. J. 2012;16:68–76. [PMC free article] [PubMed] [Google Scholar]
212. Rodrigues C., de Assis A.M., Moura D.J., Halmenschlager G., Saffi J., Xavier L.L., Fernandes Mda C., Wink M.R. New therapy of skin repair combining adipose-derived mesenchymal stem cells with sodium carboxymethylcellulose scaffold in a pre-clinical rat model. PLoS ONE. 2014;9:e96241. doi: 10.1371/journal.pone.0096241. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
213. Navone S.E., Pascucci L., Dossena M., Ferri A., Invernici G., Acerbi F., Cristini S., Bedini G., Tosetti V., Ceserani V., et al. Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res. Ther. 2014;5:7. doi: 10.1186/scrt396. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
214. Qi C., Xu L.M., Deng Y., Wang G.B., Wang Z., Wang L. Sericin hydrogels promote skin wound healing with effective regeneration of hair follicles and sebaceous glands after complete loss of epidermis and dermis. Biomater. Sci. 2018;6:13. doi: 10.1039/C8BM00934A. [PubMed] [CrossRef] [Google Scholar]
215. Pelizzo G., Avanzini M.A., Mantelli M., Croce S., Maltese A., Vestri E., De Silvestri A., Percivalle E., Calcaterra V. Granulation tissue-derived mesenchymal stromal cells: A potential application for burn wound healing in pediatric patients. J. Stem Cells Regen. Med. 2018;14:53–58. [PMC free article] [PubMed] [Google Scholar]
216. Lightner A.L., Wang Z., Zubair A.C., Dozois E.J. A systematic review and meta-analysis of mesenchymal stem cell injections for the treatment of perianal Crohn’s disease: Progress made and future directions. Dis. Colon Rectum. 2018;61:629–640. doi: 10.1097/DCR.0000000000001093. [PubMed] [CrossRef] [Google Scholar]
217. Wu Q.N., Lei X.T., Chen L., Zheng Y.L., Huang H.M., Qian C., Liang Z.W. Autologous platelet-rich gel combined with in vitro amplification of bone marrow mesenchymal stem cell transplantation to treat the diabetic foot ulcer: A case report. Ann. Transl. Med. 2018;6:7. doi: 10.21037/atm.2018.07.12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
218. Kuhl T., Mezger M., Hausser I., Handgretinger R., Bruckner-Tuderman L., Nystrom A. High local concentrations of intradermal MSCs restore skin integrity and facilitate wound healing in dystrophic epidermolysis bullosa. Mol. Ther. 2015;23:1368–1379. doi: 10.1038/mt.2015.58. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
219. Portas M., Mansilla E., Drago H., Dubner D., Radl A., Coppola A., Di Giorgio M. Use of human cadaveric mesenchymal stem cells for cell therapy of a chronic radiation-induced skin lesion: A case report. Radiat. Prot. Dosim. 2016;171:99–106. doi: 10.1093/rpd/ncw206. [PubMed] [CrossRef] [Google Scholar]
220. Zhuge Y., Regueiro M.M., Tian R., Li Y., Xia X., Vazquez-Padron R., Elliot S., Thaller S.R., Liu Z.J., Velazquez O.C. The effect of estrogen on diabetic wound healing is mediated through increasing the function of various bone marrow-derived progenitor cells. J. Vasc. Surg. 2018;68:127S–135S. doi: 10.1016/j.jvs.2018.04.069. [PubMed] [CrossRef] [Google Scholar]
221. Sheng Z., Fu X., Cai S., Lei Y., Sun T., Bai X., Chen M. Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Repair Regen. 2009;17:427–435. doi: 10.1111/j.1524-475X.2009.00474.x. [PubMed] [CrossRef] [Google Scholar]
222. Xia Y., You X.E., Chen H., Yan Y.J., He Y.C., Ding S.Z. Epidermal growth factor promotes mesenchymal stem cell-mediated wound healing and hair follicle regeneration. Int. J. Clin. Exp. Pathol. 2017;10:7390–7400. [PMC free article] [PubMed] [Google Scholar]
223. Jiang M.H., Li G.L., Liu J.F., Liu L.S., Wu B.Y., Huang W.J., He W., Deng C.H., Wang D., Li C.L., et al. Nestin+ kidney resident mesenchymal stem cells for the treatment of acute kidney ischemia injury. Biomaterials. 2015;50:56–66. doi: 10.1016/j.biomaterials.2015.01.029. [PubMed] [CrossRef] [Google Scholar]
224. Zhou Z., Yan H., Liu Y.D., Xiao D.D., Li W., Wang Q., Zhao Y., Sun K., Zhang M., Lu M.J. Adipose-derived stem-cell-implanted poly(ε-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model. Regen. Med. 2018;13:331–342. doi: 10.2217/rme-2017-0120. [PubMed] [CrossRef] [Google Scholar]
225. Kolesky D.B., Homan K.A., Skylar-Scott M.A., Lewis J.A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl. Acad. Sci. USA. 2016;113:3179–3184. doi: 10.1073/pnas.1521342113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
226. Lin P.P., Wang Y., Lozano G. Mesenchymal stem cells and the origin of Ewing’s sarcoma. Sarcoma. 2011;2011:276463. doi: 10.1155/2011/276463. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
227. Amariglio N., Hirshberg A., Scheithauer B.W., Cohen Y., Loewenthal R., Trakhtenbrot L., Paz N., Koren-Michowitz M., Waldman D., Leider-Trejo L., et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6:e1000029. doi: 10.1371/journal.pmed.1000029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
228. Uccelli A., Moretta L., Pistoia V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 2008;8:726–736. doi: 10.1038/nri2395. [PubMed] [CrossRef] [Google Scholar]
229. Karnoub A.E., Dash A.B., Vo A.P., Sullivan A., Brooks M.W., Bell G.W., Richardson A.L., Polyak K., Tubo R., Weinberg R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–563. doi: 10.1038/nature06188. [PubMed] [CrossRef] [Google Scholar]
230. Weis S.M., Cheresh D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med. 2011;17:1359–1370. doi: 10.1038/nm.2537. [PubMed] [CrossRef] [Google Scholar]
231. Li W., Ren G., Huang Y., Su J., Han Y., Li J., Chen X., Cao K., Chen Q., Shou P., et al. Mesenchymal stem cells: A double-edged sword in regulating immune responses. Cell Death Differ. 2012;19:1505–1513. doi: 10.1038/cdd.2012.26. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
232. Popova A.P., Bozyk P.D., Goldsmith A.M., Linn M.J., Lei J., Bentley J.K., Hershenson M.B. Autocrine production of TGF-β1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells. Am. J. Physiol.: Lung Cell. Mol. Physiol. 2010;298:L735–743. doi: 10.1152/ajplung.00347.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
233. Collins J.J., Thebaud B. Lung mesenchymal stromal cells in development and disease: To serve and protect? Antioxid. Redox. Signal. 2014;21:1849–1862. doi: 10.1089/ars.2013.5781. [PubMed] [CrossRef] [Google Scholar]
234. Lalu M.M., McIntyre L., Pugliese C., Fergusson D., Winston B.W., Marshall J.C., Granton J., Stewart D.J. Safety of cell therapy with mesenchymal stromal cells (SafeCell): A systematic review and meta-analysis of clinical trials. PLoS ONE. 2012;7:e47559. doi: 10.1371/journal.pone.0047559. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
235. Tsutsumi S., Shimazu A., Miyazaki K., Pan H., Koike C., Yoshida E., Takagishi K., Kato Y. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem. Biophys. Res. Commun. 2001;288:413–419. doi: 10.1006/bbrc.2001.5777. [PubMed] [CrossRef] [Google Scholar]
236. Shahdadfar A., Fronsdal K., Haug T., Reinholt F.P., Brinchmann J.E. In vitro expansion of human mesenchymal stem cells: Choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells. 2005;23:1357–1366. doi: 10.1634/stemcells.2005-0094. [PubMed] [CrossRef] [Google Scholar]
237. Berniakovich I., Giorgio M. Low oxygen tension maintains multipotency, whereas normoxia increases differentiation of mouse bone marrow stromal cells. Int. J. Mol. Sci. 2013;14:2119–2134. doi: 10.3390/ijms14012119. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
238. Holubova M., Lysak D., Vlas T., Vannucci L., Jindra P. Expanded cryopreserved mesenchymal stromal cells as an optimal source for graft-versus-host disease treatment. Biologicals. 2014;42:139–144. doi: 10.1016/j.biologicals.2014.01.003. [PubMed] [CrossRef] [Google Scholar]
239. Stolzing A., Jones E., McGonagle D., Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech. Ageing. Dev. 2008;129:163–173. doi: 10.1016/j.mad.2007.12.002. [PubMed] [CrossRef] [Google Scholar]